Rail Profile Selection Method to Reduce Gauge Corner Cracking Initiation

Masahiro TSUJIE Masaharu KONO Yoshiaki TERUMICHI

Gauge corner cracking (GCC) occurs on heat treated rails of the high rail in curved sections with a radius of 600 to 800 m. In our previous research, we proposed a countermeasure method for suppressing the GCC initiation by applying a rail with worn profiles to the high rail in curved sections to reduce contact pressure between wheel and rail. In this study the cross-sectional rail profile that is the most effective in suppressing crack initiation was selected by numerical analysis for the high rail in curved sections with a radius of 600 to 800 m. キーワード:ゲージコーナき裂, 摩耗進展, 疲労指数, マルチボディダイナミクス, 機械学習, ニューラ ルネットワーク

1. はじめに

在来線の半径 600~800m の曲線外軌に敷設した熱処 理レールのゲージコーナ部において、ゲージコーナき裂 (以下、「GCC」とする)の発生が多数確認されている (図1)。GCCは、大きく進展するとレール折損を引き 起こす危険性があるものの、連続的に発生するため、頭 部補修溶接法¹⁾により除去することは困難である。した がって GCCは、その発生を予防することが重要となる。

筆者らは、摩耗進展によって車輪/レール間の接触が なじむことに着目し、GCCの発生が懸念される曲線外 軌にレール削正を施工して摩耗形状を適用することによ り、車輪/レール接触の緩和を図り、転動疲労き裂であ るGCCの発生を抑制する手法を提案した²⁾。しかし本 手法では、曲線半径をはじめとする軌道条件や列車の走 行条件によって、得られるレール摩耗形状も異なる結果 が予想される。したがって、本手法を実際の営業線で施 工するためには、各箇所に応じたレール摩耗形状を予測

図1 ゲージコーナき裂の発生例

するだけでなく、レール摩耗形状へとレール削正を施工 する方法についても個別に検討する必要がある。

そこで本研究では、GCCの発生が懸念される半径 600~800mの曲線外軌を対象に、機械学習により車輪 /レール接触状態の緩和を図るレール断面形状を探索 し、最もき裂抑制効果が高いレール断面形状を選定する 手法について検討した。

2. き裂発生評価

レール頭頂面を起点として発生する、シェリングや ゲージコーナき裂のような転動疲労き裂の発生を評価す る指標として、シェイクダウン理論³⁾⁴⁾に基づいた疲労 指数(FI:Fatigue Index)により評価する手法(以下、 「FIモデル」とする)が、先行研究⁵⁾において提案さ れている。本手法では、転がり接触疲労は、車輪/レー ル接触部における面圧やクリープ力に依存する、という 考え方に基づいている。そして、接触状態がシェイクダ ウン限界を超過すると、塑性ひずみが蓄積し、転動疲労 き裂の発生に至ると評価する。FIモデルにおける疲労 指数の値は、以下の式(1)で与えられる。

$$FI = \frac{\sqrt{F_x^2 + F_y^2}}{F_z} - \frac{k_s}{p_0}$$
(1)

ここで、FIは疲労指数、 F_x ならびに F_y はそれぞれ縦 クリープ力ならびに横クリープ力、 F_z は車輪/レール 間の接触力である。また、 k_s はレール鋼のせん断強度で あり、 p_0 は最大接触面圧である。

FI モデルでは,式(1)で与えられる疲労指数の値により,き裂発生リスクを評価している。つまり,式(1)で

文

論

^{*} 鉄道力学研究部 軌道力学研究室

^{**} 上智大学

与えられ得る FI の値が高いほど,き裂発生リスクは高 くなると考えられる。先行研究²⁾より,熱処理レール 材においては,FI の値が-0.8 を超過した際に,き裂の 発生を確認した。

3. 摩耗進展解析によるレール摩耗形状予測

本章では、GCC の発生の抑制を図るレール摩耗形状 について検討するため、営業線において GCC の発生が 確認された曲線区間を対象として、摩耗進展解析を実施 し、レール摩耗形状を予測した。

3.1 摩耗進展解析モデルの概要

本節では、摩耗進展解析で用いた摩耗形状予測モデ ル⁶⁾について概要を記載する。図2に摩耗進展解析の 解析フローを示す。

本モデルでは、マルチボディダイナミクスソフト Simpack を活用した車両運動解析、ならびにそれらの解 析結果に基づく摩耗形状予測から構成される。はじめ に、Simpack において対象とする車両/軌道モデルを構 築し、それらのモデルによる車両運動解析を実施する。 つぎに、Simpack より得られた解析結果に基づき、車輪 /レール接触状態を評価する。そして車輪/レール接触 状態から、各箇所におけるレールの摩耗量を算出する。 算出した摩耗量ならびにはじめにモデル化したレール断 面形状より、レールの摩耗形状を構築する。最後に、構 築したレール摩耗形状を再び Simpack の軌道モデルに 再配置することで、摩耗形状の軌道モデルに更新する。 以上の手順を繰り返すことにより、レール摩耗形状の時 系列変化を予測することができる。

また、1 車両の通過によって算出される摩耗量はごく わずかであり、それによる断面形状の変化はほとんど見 られず、車輪/レール接触への影響もほとんどないと考 えられる。そこで図2に示す摩耗形状の更新について は、先行研究⁷⁾に基づき、摩耗量を10000倍しても、 その後の断面形状更新に影響を及ぼすことがないため、 1 車両の通過によって算出される摩耗量を10000倍して 摩耗形状を形成した。

3.2 解析条件

前節で記述した摩耗形状予測モデルを活用し,営業線 において GCC の発生が懸念される半径 600,700,800m の曲線外軌を対象に,レール摩耗形状を予測した。解析 条件(軌道モデル)を表1に示す。なお,この軌道モデ ルを通過する車両モデルについては,在来線修正円弧踏 面を有する通勤型車両(走行速度:105km/h)を対象に 構築した。

先行研究⁸⁾より,GCCに混在するきしみ割れの発生

図2 摩耗進展解析の解析フロー

(図1)については、台車前軸における車輪/レール接触が影響している。GCCについても、きしみ割れと同様に、台車前軸における車輪との接触帯域で発生していることから、前軸における車輪/レール接触が影響していると考え、前軸の車輪/レール接触を対象として摩耗進展解析を実施した。

レール摩耗形状は通過する車輪の形状(設計形状や摩 耗形状)の影響を受けるが、車輪の摩耗形状は一意に定 まらないため、設計形状の車輪においては車輪/レール 間の接触面圧が高く、より摩耗進展が促進すると考え、 図2に示す車両運動解析の車輪形状は常に設計形状と した。つまり、車輪における摩耗進展は考慮せず、レー ルのみ摩耗進展させる条件で実施した。なお図2に示す 断面形状の更新については、削正車による施工でレール 摩耗形状を製作することを鑑み、一晩での施工能力から 摩耗深さ(削正深さ)が約0.3mmに収まるよう、15回 実施した(本研究では以下、レール断面形状の更新回数 をnとする)。

3.3 解析結果

前節に示す条件で実施した摩耗進展解析より算出した,曲線外軌におけるレール頭頂面形状について,更新

表1 解析条件(摩耗進展解析)

	Case 1	Case 2	Case 3
曲線半径[m]	600	700	800
カント量[mm]	105		
断面形状		JIS 60kg	

回数5回,10回,15回の結果を図3に示す。ただし, いずれの図においても、横軸はレール頭頂面中心から ゲージコーナ側への距離を示す。また、摩耗深さならび に摩耗による形状変化をより顕著に示すため、縦軸は拡 大して示す。

図3に示すように、いずれの曲線半径においても、断 面形状を更新するにつれて、レールゲージコーナ部の曲 率は減少する傾向が確認できる。一方で、曲線半径の違 いにより、摩耗帯域や深さ方向の摩耗進展に差が生じて いることが確認できる。このような差が見られる要因と して、曲線半径の差が影響し、車輪/レール間の接触状

態 (接触位置や接触応力)に差が生じたことが考えられる。

4. レール摩耗形状によるき裂発生評価

本章では,前章に引き続き,機械学習に用いる教師デー タを蓄積するため,3章で実施した摩耗進展解析より得ら れたレール摩耗形状を用いて,車輪/レール接触解析を 実施した。そして,2章に記載したFIモデルを適用し,レー ル摩耗形状のき裂発生に対する影響について評価した。

4.1 解析条件

車輪/レール接触解析は前章と同様,半径600, 700,800mの曲線区間を対象に実施した。ただし円曲 線区間の外軌については,設計形状(n=0)ならびに前 章の摩耗進展解析により得られた更新15回分の摩耗形 状(n=1~15)を配置した。本節で実施した車輪/レー ル接触解析の解析条件(9ケース)を表2に示す。

表2に示すように、本節における車輪/レール接触解 析においては、GCC発生の抑制効果が高いレール断面 形状を、機械学習(次章に記載)により選定するための 教師データを蓄積するため、前章でのレール摩耗形状に 対応する曲線半径に加え、その他の曲線半径についても 適用して解析を実施した。つまり、前章の摩耗進展解析 において半径 600m の曲線区間におけるレール摩耗形状 (前章 Case1 の解析より得られた摩耗形状 (n=1~ 15) ならびに設計形状 (n=0)) を. 本節の車輪/レー ル接触解析では半径600mの曲線区間(表2に示す Case4-a) だけでなく, 半径700m (表2に示す Case5-a) ならびに 800m (表 2 に示す Case6-a) の曲線 区間にも適用した。同様に、半径 700m(前章 Case2 の 解析より得られた摩耗形状)ならびに半径 800m(前章 Case3の解析より得られた摩耗形状)の曲線区間におけ るレール摩耗形状についても、摩耗進展解析とは異なる 半径の曲線区間にも適用し、車輪/レール接触解析を実 施した。そして、車輪/レール接触解析より得られた接 |触点(レール頭頂面中心からゲージコーナ側に約 20~ 22mmの点)における車輪/レール接触状態から、2章 に記載したFIモデルを適用し、き裂発生評価を実施し た。なお車両モデルについては、前章と同じ通勤型車両 ならびに走行条件を採用した。

4.2 疲労指数によるき裂発生評価

表2に記述した条件で実施した車輪/レール接触解 析の解析結果を式(1)に適用し、円曲線外軌における疲 労指数を算出した。なお式(1)におけるせん断強度 k_s に ついては、対象である熱処理レール材の引張強度の値が 1200N/mm²であることから、この値を $\sqrt{3}$ で除した値を 採用した。その結果を表2に示す解析条件(Case4~6)

試番	曲線半径	レール形状	
	[m]		
Case 4-a	600	設計形状 (n=0)	
		摩耗形状 (Case1:n=1~15)	
Case 4-b		設計形状 (n=0)	
		摩耗形状(Case2:n=1~15)	
Case 4-c		設計形状 (n=0)	
		摩耗形状(Case3:n=1~15)	
Case 5-a	700	設計形状 (n=0)	
		摩耗形状(Case1:n=1~15)	
Case 5-b		設計形状 (n=0)	
		摩耗形状(Case2:n=1~15)	
Case 5-c		設計形状 (n=0)	
		摩耗形状(Case3:n=1~15)	
Case 6-a	800	設計形状 (n=0)	
		摩耗形状(Case1:n=1~15)	
Case 6-b		設計形状 (n=0)	
		■ 摩耗形状(Case2:n=1~15)	
Case 6-c		設計形状 (n=0)	
		摩耗形状(Case3:n=1~15)	

表2 解析条件(車輪/レール接触解析)

別に, 図4(a) ~ (c) に示す。なお, いずれの図とも, 横軸は摩耗進展解析におけるレール断面形状の更新回数 (n) である。なお, 車輪/レール接触解析において複 数点で車輪/レールが接触していた場合は, 安全側の評 価となるよう, 最も疲労指数が高い, すなわちき裂発生 リスクが高い値を採用した。

図4に示すように、いずれの曲線半径に対しても曲線 外軌に摩耗形状を適用すると、設計形状(n=0)と比べ て、疲労指数は後述する一部を除いて概ね減少する傾向 が見受けられる。特にこの傾向は、曲線半径が700mの Case5、ならびに曲線半径800mのCase6において、よ り顕著に確認できた。一方で、Case4やCase5に示す複 数の結果(例として、Case4-aにおけるn=8の結果や Case4-bならびにCase5-bにおけるn=14、Case5-cにお けるn=15の結果)については、車輪/レール間で多点 接触したために、局所的に高い接触面圧が発生するよう な接触状態となり、結果として疲労指数の値が高くなった。

全体的な傾向として、本研究で実施した解析の範囲内 では一部の条件を除き、車輪との接触状態から算出され る疲労指数は、設計形状を適用(図4(a)~(c)のn =0)した場合と比べて、曲線外軌に摩耗形状を適用す ることにより、減少する傾向が確認できた。

5. 機械学習によるレール断面形状の選定

本章では、3章で実施した摩耗進展解析より予測した レール摩耗形状(図3)、ならびに4章で実施した車輪 /レール接触解析より算出した疲労指数(図4)を教師 データとする機械学習により、半径600~800mのいず れの曲線に対しても、き裂発生の抑制効果が高いレール 断面形状を探索した。ただし断面形状の探索において、 3章で得られたレール摩耗形状を一律に教師データとし て機械学習に活用すると、さまざまな曲線半径における 摩耗形状を組み合わせた、滑らかでない凸凹な断面形状 が最適解として収束する可能性が考えられる。そして、 そのような断面形状においては、車輪/レール接触がな

じまず,結果として多点接触や局所的に高い接触面圧が 発生するような,特異な接触状態となりうる懸念がある。 そこで本研究では,各曲線半径において予測したレール 摩耗形状を一括りに取り扱うのではなく,曲線半径別に き裂抑制効果が高いレール断面形状を探索することとし た。この手法であれば,単一の曲線半径をモデルとした レール摩耗形状をもとに探索した断面形状であるため, さまざまな曲線半径の摩耗形状を組み合わせた特異な形 状となることや,特異な車輪/レール接触状態となるこ とを回避することが期待できる。そこで,3章の摩耗進 展解析ならびに4章の車輪/レール接触解析を含め,

各曲線半径を対象としたレール摩耗形状を予測

- ② 予測したレール摩耗形状を用いた車輪/レール接触解析を実施し、各条件における疲労指数を算出
- ③ 曲線半径別のレール摩耗形状から、最も疲労指数 が低くなる形状を機械学習により探索
- ④ ③により探索したレール断面形状候補の中から, すべての曲線半径に対して疲労指数を低下させる 効果のあるレール断面形状を選定

という4つのステップで,き裂抑制効果が高いレール断 面形状を選定した。①~③のスキームを図5に,④のス キームを図6に示す。また各ステップの詳細について, 以下に記述する。

(ステップ①)

はじめに、3章で実施したように半径 600~800mの 円曲線外軌を対象とした摩耗進展解析を実施し、図3で 示すようにレール摩耗形状を予測する。なお図5におい ては、半径 600、700、800mの摩耗形状(n=0~15) に該当する。

(ステップ②)

つぎに、①で得られたレール摩耗形状を曲線外軌に適 用した車輪/レール接触解析を実施し、車輪/レール接 触状態から疲労指数を算出した。4章でも記載したよう に,車輪/レール接触解析から算出される疲労指数の値 は機械学習での教師データとして活用するため、摩耗進 展解析でモデルとした曲線半径に加えて、それ以外の曲 線半径についても車輪/レール接触解析を実施した。算 出した疲労指数は、図5において FI $\frac{1}{2}$ (1) や FI $\frac{3}{1}$ (2) 等に該当する。ここで図5における FI_2(1) は、半径 600m をモデルとした摩耗進展解析について、断面形状 の更新を1回実施(n=1)した際のレール摩耗形状を 半径 700m の曲線外軌に適用した際の疲労指数である。 同様に, FI_1 (2) は, 半径 800m をモデルとした摩耗 進展解析について断面形状の更新を2回実施(n=2) した際のレール摩耗形状を半径 600m の曲線外軌に適用 した際の疲労指数である。本研究では、半径600、 700,800mの3つの曲線半径を対象に摩耗進展解析を 実施し、それぞれ 15 回の断面形状の更新 (n=1~15) を実施している。さらに、同じ3つの曲線半径を対象に 車輪/レール接触解析を実施していることから,図5に おいて 48 個のレール断面形状データ (n=0 は設計形状 のため同一形状), ならびに各断面形状に関連付けられ る総計144 個 (n=0 は同一形状であるため, 疲労指数 の値も同じ)の疲労指数がデータとして算出される。

(ステップ③)

本章のはじめにも記載したように、ステップ②で得ら れた48個のレール断面形状データならびに144個の疲 労指数を一括りに扱ってレール断面形状を探索すると、 さまざまな曲線半径の摩耗形状を組み合わせた、凸凹で 滑らかでない断面形状が最適解として収束する可能性が 考えられる。そこで本研究では、これらの問題点を回避 するため、同一の曲線半径の摩耗形状ならびにそれに対 応する疲労指数を教師データとした機械学習を行い、曲 線半径ごとに最適形状を探索した。つまり図5におい て、半径 600mの曲線区間をモデルとした摩耗進展解析 より予測した16個のレール断面形状 (n=0~15) と、 それぞれに対応する合計48 個の疲労指数 $\mathrm{FL}_1^{-1}(0) ~$ $\mathrm{FL}_3^{-1}(15)$ を教師データとし、それらから半径 600、 700、800m に適用した際に最も疲労指数が低くなる形 状を機械学習により探索した。機械学習により得られた 断面形状をそれぞれ形状(1),形状(2),形状(3)と する(図5)。同様に,半径700mの曲線区間をモデル として予測したレール断面形状とそれに対応する疲労指 数,半径800mの曲線区間をモデルとして予測したレー ル断面形状とそれに対応する疲労指数をもとに,最も疲 労指数が低くなる断面形状として,形状(4)~形状(9) を探索した。なお本研究における機械学習については, 5層のニューラルネットワークを構築して実施した。

(ステップ④)

最後に、ステップ③で得られた9つの断面形状である 形状(1) ~形状(9) について、半径600,700,800m の3つの曲線外軌に適用した、円曲線外軌における車輪 /レール接触状態から、疲労指数(FI₁(1)~FI_m(n)) を算出した(図6)。なお本研究では、上述のように適 用した曲線半径は3種類、断面形状候補は9候補ある ことから、図6においてm=3,n=9となる。図6に示 すように、各断面形状について算出される疲労指数につ いて、以下の式(2)に示すように各条件における疲労指 数の総和を算出することで、その断面形状を適用した際 の適用度が算出されると考えられる。つまり、半径 600,700,800mの3つの曲線外軌に適用した際に、す べての曲線半径に対してき裂抑制効果が高ければ、算出 される疲労指数の総和は低くなる。逆に、き裂抑制効果 が低ければ、疲労指数の総和は高くなる。

$$FI_{t} = \sum_{k=1}^{m} FI_{k}(i)$$
 $(i = 1 \sim n)$ (2)

ただし *FI*_{*i*} は疲労指数の総和, *FI*_{*k*} (*i*) は各断面形状を 適用した際に算出される疲労指数である。

このように、さまざまな条件に適用した際に算出され る疲労指数の総和によって、いずれの曲線半径に対して も最もき裂抑制効果が高いレール断面形状を選定するこ とができる。図5に示す9個の断面形状候補について、 半径600,700,800mの3つの曲線外軌にそれぞれ適 用した車輪/レール接触解析を実施し、各曲線半径別に 疲労指数を算出した。そして、式(2)で与えられる、半 径600,700,800mの3つの曲線外軌に適用した疲労 指数の総和を算出した。それらの結果を図7に示す。な お比較のため、JIS60kgレール断面形状についても同様 に適用した結果を合わせて示す。

図7より,本研究において検討した9つの断面形状 候補は,いずれもJIS60kgレール断面形状に比べて,式 (2)で与えられる疲労指数の総和が低い値となっている ことから,き裂発生の抑制効果が認められる。特に9つ の断面形状候補の中では,形状(3)が最も低い値となっ

図7 形状候補における疲労指数の算出結果

たことから、本研究で検討した範囲内では最もき裂抑制 効果が高い断面形状であると考えられる。そこで本研究 では以下、この形状(3)の断面形状をGCCの抑制効 果が最も高い断面形状(以下、「最適形状」とする)と して取り扱う。

6. 提案形状によるき裂抑制効果

本章では,前章において選定した最適形状について, 車輪/レール接触解析結果に基づき,き裂抑制効果を評価した。

はじめに、最適形状とJIS60kg レール断面形状を重ね 合わせた結果を図8に示す。また、最適形状における設 計形状との高さ方向の差を図9に示す。なお、いずれの 図においても、断面方向の正の側がゲージコーナ側とな るようプロットしている。また断面形状の差をより顕著 に示すため、縦軸については拡大して表示している。

図8に示すように,最適形状はゲージコーナ側の一部 が摩耗した形状となっている。また顕著な凹凸もなく, 滑らかな形状であることが確認できる。

図9に示すように、最適形状とJIS60kgレール断面形 状を比較すると、ゲージコーナ側で最大約0.3mmの差 が確認できる。したがって、本研究で提案する最適形状 については、JIS60kgレール断面形状を図9で示す位置、 量を研削すること、もしくは図8に示す最適形状となる よう鋼片を圧延することで製作することができる。

つぎに,最適形状における曲線半径別のき裂抑制効果 を評価するため,前章で行った車輪/レール接触解析より,半径 600,700,800mの3つの曲線外軌に最適形 状を適用した際の疲労指数をもとに検討した。

最適形状ならびに JIS60kg レール断面形状を半径 600,700,800mの3つの曲線外軌に適用した際の疲労 指数について算出した結果を図10に示す。なお2章で も記載した通り,先行研究²⁾より熱処理レール材にお いては,FIの値が-0.8を超過した際に,き裂の発生を 確認していることから,この値を基準にプロットした。

図10に示すように、いずれの曲線半径においても、

最適形状における疲労指数の値は、JIS60kg レール断面 形状に比べて減少する結果となった。特に半径 700m な らびに半径 800m においては、疲労指数の減少する傾向 が大きいことを確認した。これらの結果より、提案形状 を半径 600~800m の曲線外軌に適用することにより、 JIS60kg 形状のレールを敷設した状況に比べて、ゲージ コーナ部におけるき裂の発生状況を緩和する効果が期待 できる。

7.まとめ

本研究では、複数の曲線半径に対して、GCCの起点 となるゲージコーナ部のき裂発生を抑制するレール断面

図10 曲線半径別の疲労指数の比較

形状を提案するため,き裂発生を評価する疲労指数を最 小化するレール断面形状を選定することを目的とした。 得られた結果は以下の通りである。

- ・マルチボディダイナミクスを活用した摩耗進展解析, ならびに予測したレール摩耗形状を曲線外軌に適用し た車輪/レール接触解析を実施した。そして,これらの解析より得られたレール摩耗形状ならびにその断面 形状に対応する疲労指数を教師データとした機械学習 を実施した。さらに,機械学習により探索した各レー ル断面形状に対する疲労指数の総和を算出することで,疲労指数を最小化するレール断面形状を選定する プロセスを示した。
- ・半径 600,700,800mの曲線区間を対象に、上記の プロセスを適用し、これらの曲線半径に対して疲労指 数を最小化するレール断面形状を選定した。
- ・選定したレール断面形状について、半径 600,700, 800mの曲線外軌に適用した際のき裂抑制効果を評価 した。その結果、JIS60kgレール断面形状と比較する と、疲労指数が減少する傾向を確認した。したがって、 選定した断面形状のレールをこれらの半径の曲線外軌 に適用することで、ゲージコーナ部のき裂発生を緩和 する効果が期待できる。

本研究では、マルチボディダイナミクスの観点から、

最適形状におけるき裂抑制効果を検討した。今後は FEMによる車輪/レール接触応力解析,ならびに実物 大の車輪/レール断面形状を有する試験輪を組み合わせ た転動疲労試験を実施し,本研究で提案した最適形状に おけるき裂抑制効果を検証する予定である。

文 献

- 伊藤太初,梅内一行,寺下善弘,辰巳光正,山本隆一:テ ルミット頭部補修溶接法を用いたレール補修方法,鉄道総 研報告, Vol.28, No.6, pp.41-46, 2014
- 2) 辻江正裕,沖田雅佳,陳樺,曄道佳明:摩耗進展による車 輪/レール接触の緩和を図ったゲージコーナき裂抑制手法 の検討,日本機械学会論文集,Vol.88,No.908,DOI: 10.1299/transjsme.21-00327,2022
- K.L. Johnson, "The strength of surfaces in rolling contact," Proceedings of the Institution of Mechanical Engineers, Part C, Vol.203, pp.151-163, 1989.
- 4) A.F. Bower, K.L. Johnson, "Plastic flow and shakedown of the rail surface in repeated wheel-rail contact," Wear, 144, pp.1-18, 1991.
- 5) A. Ekberg, E. Kabo, H. Andersson, "An engineering model for prediction of rolling contact fatigue of railway wheels," Fatigue Fracture Engineering Master Structure, 25, pp. 899-909, 2002.
- 6) 辻江正裕,沖田雅佳,陳樺,曄道佳明:混合すべり条件下 におけるレール摩耗形状予測モデルの構築,日本機械学会 論文集, Vol.86, No.890, DOI: 10.1299/transjsme.20-00056, 2020
- 7) 辻江正裕,吉岡亜陸,水谷祐貴,曄道佳明:マルチボディ ダイナミクスによるレール摩耗形状予測モデルの構築と妥 当性の検証,日本機械学会論文集,Vol.83, No.854, DOI: 10.1299/transjsme.17-00074,2017
- 8) Y. JIN, F. Aoki, M. Ishida, A. Namura, "Investigation and analysis of the occurrence of rail head checks," International Journal of Railway, Vol.2, No.2, pp.43-49, 2009.