凍害環境下における経年 PC まくらぎの性能評価

渡辺 勉* 後藤 恵一* 飯島 亨** 盛田 慶***

Performance Evaluation of Aged Prestressed Concrete Sleepers in Cold Regions

Tsutomu WATANABE Keiichi GOTO Tooru IIJIMA Kei MORITA

In order to evaluate the performance of aged Prestressed Concrete (PC) sleepers installed in a region with a high risk of frost damage, we conducted various tests and numerical analyses on load capacity and material deterioration due to frost damage. The results clarify that the sleepers not using the air entraining agent have low frost damage resistance, and that if the scaling is generated throughout sleepers, the bending load resistance becomes less than the minimum required value specified Japanese Industrial Standard. On the basis of these results, we propose a method for evaluating the soundness of PC sleepers with frost damage.

キーワード: PC まくらぎ,維持管理,凍害,スケーリング,数値解析,コンクリートまくらぎ

1. はじめに

プレストレストコンクリート製まくらぎ(以下, PC まくらぎ)は鉄道に欠かすことのできない重要な構成要 素である。わが国の PC まくらぎは,1951年に東海道本 線に初めて試験敷設されて以降,現在までの累計敷設本 数は国鉄,JR だけでも3950万本を超える。PC まくら ぎの設計耐用年数は一般に50年とされているが,営業 線に敷設された PC まくらぎには経年が50年を超えて いるものも出てきており,近年では木まくらぎの置き換 えだけではなく,既存の PC まくらぎの交換比率も増加 している。このような実態を受けて,今後の計画的な維 持管理のために,経年 PC まくらぎの実態調査や交換基 準に関する検討が進められている¹⁾。

一方,現在のPCまくらぎはAEコンクリートがごく 一般的に使用されているが,とくにプレテンション式の PCまくらぎについては,PC鋼より線とコンクリートと の付着力の低下や強度発現の遅れによる製造工程への影 響などの懸念から,1990年にJIS E1201が制定されるま ではAEコンクリートは使用されていなかった。このよ うなAEコンクリートを使用していないPCまくらぎは わが国の比較的凍害危険度²⁾³⁾が高いと想定される地域 にも敷設されており,近年これらの一部に凍害による変 状が散見されている⁴⁾。しかしながら,既往の検討¹⁾は, 主に首都圏の経年PCまくらぎを対象としており,凍害 危険度の高い地域に敷設された経年PCまくらぎを対象

そこで本研究では、凍害危険度が高い地域に敷設され、

図1 3 号プレテンション式 PC まくらぎ (JRS)

表1 コンクリートの諸元

設計基準強度 $f'_{ck}(N/mm^2)$	49.1
プレストレス導入時強度 (N/mm ²)	39.2
静弹性係数 $E_c(kN/mm^2)$	33.0
終局ひずみμ	3500
曲げ圧縮強度 f' _{cde} (N/mm ²)	$19.6 \ (= 0.4 f'_{ck})$

かつ AE コンクリートが使用されていない経年 PC まく らぎを対象とし、以下の点について検討を実施した。

- (1) AE コンクリートを使用していない経年 PC まくら ぎに対して各種試験を実施し、劣化傾向、コンクリー トの耐凍害性や耐荷力などを把握する。
- (2) 凍害(スケーリング)が PC まくらぎの耐荷力に及 ぼす影響を数値解析により評価する。
- (3) 以上の結果より、凍害を受けた経年 PC まくらぎの 健全度評価方法の参考例を提案する。

2. 凍害環境下の PC まくらぎの性能評価試験

2.1 PC まくらぎの概要

図1に本研究で対象とした日本国有鉄道規格(JRS) に規定される3号プレテンション式PCまくらぎを,表 1にそのコンクリートの諸元を示す。表2に対象とした PCまくらぎ(4線区,165本)の一覧を示す。これらは 1960年代,1970年代に製造された経年45~55年程度

^{*} 鉄道力学研究部 構造力学研究室

^{**} 材料技術研究部 コンクリート材料研究室(現 株式 会社ジェイアール総研エンジニアリング)

^{***} 株式会社安部日鋼工業

の PC まくらぎであり、いずれも AE コンクリートが使 用されていない。敷設箇所は、内陸部でかつ既往研究の コンクリートの凍害危険度の分布²⁾において、凍害危険 度が5段階中、2(軽微)あるいは3(やや大きい)に 分類される地域である。

2.2 試験項目

表3に試験項目の概要を示す。外観調査では、PCま くらぎの表面を高圧洗浄機で洗浄し、まくらぎの表面状 態を目視で観察した。PCまくらぎのコンクリートの耐 凍害性を評価するために、PCまくらぎからコアを採取し、 凍結融解試験(JIS A1148:2000(A法))と気泡間隔係数 測定試験(ASTM C457-16によるリニアトラバース法) を実施した。また、超音波試験機「パンジット lab」を用 いて、PC まくらぎのコンクリートの超音波の伝播速度を、 まくらぎ上面と底面を測定面とする対面法で測定した。

さらに、PC まくらぎの力学的な性能評価のために、 コンクリートコアの圧縮強度試験 (JIS A1108),静弾性 係数試験 (JIS A1149)を実施するとともに、PC まくら ぎの曲げ試験 (JIS E1201)を実施した。また、耐荷力の 評価はレール位置断面の正曲げ試験で行った。

2.3 試験結果

2.3.1 外観調査

表4に主な変状の発生状況,図2に変状の概要をそれぞ れ示す。主な変状は、凍害が原因と考えられるスケーリン グおよび微細ひび割れが長手方向に連続するひび割れ(以 下,縦ひび割れ)、レール位置断面下縁の曲げひび割れ、 まくらぎ底面の摩耗,PC鋼線の露出などの変状が見られた。

2.3.2 凍結融解試験

図3に凍結融解試験結果を示す。A線区,B線区は 各2本のPCまくらぎに対して実施した。相対動弾性係 数はいずれの供試体も90サイクルまでにひび割れなど が発生し測定が困難となり試験を終了した。土木学会が 定める相対動弾性係数の最小限度値⁵⁾は,条件によるが, 300サイクル終了時で60~85%であり,対象とした供 試体はいずれも耐凍害性が低いことがわかった。参考ま でに同図には,現在のPCまくらぎで標準的に使用され るAEコンクリートの試験結果(AE)を合わせて示したが, 当然のことながら耐凍害性を有していることがわかる。

2.3.3 気泡間隔係数測定試験

図4にコア中の気泡の粒径ごとの分布を示す。A線区, B線区は2本のPCまくらぎに対して実施した。参考ま でに同図には,現在のPCまくらぎで標準的に使用され るAEコンクリートの試験結果(AE)を合わせて示した。 AEコンクリートの気泡分布は,例えば,粒径125 µ m 以下の気泡がそれぞれの粒径で100~200個であり, 微小な気泡が多数存在するのに対し,AEコンクリート

表2 経年 PC まくらぎ (3PR) の一覧

製造	A 線区	B線区	C 線区	D 線区	合計
年	(本)	(本)	(本)	(本)	
1963	2	7	0	0	9
1964	0	39	0	0	39
1965	48	0	7	0	55
1966	0	0	42	0	42
1967	0	0	0	4	4
1968	0	0	1	6	7
1969	0	0	0	2	2
1970	0	0	0	3	3
1973	0	4	0	0	4
合計	50	50	50	15	165

表3 試験項目

項目	内容
外観	PC まくらぎ洗浄後,ひび割れ・断面欠損の 有無,埋込材の変形状態などを観察
凍結融解	コアを採取し,融解工程終了後,一次共鳴振 動数及び質量を測定(JIS A1148)
気泡間隔 係数	コアを採取し,試料作製後顕微鏡観察 (ASTM C457-16)
超音波	まくらぎ本体の超音波伝播速度を測定 (超音波試験機「パンジット lab」を使用)
圧縮強度 静弾性係数	コアを採取し,圧縮強度,静弾性係数を測定 (JIS A1108, JIS A1149)
曲げ	2 点支持,1 点載荷の曲げ試験を実施 (JIS E 1201)

表4 主な変状の発生状況

変状	A 線区	B 線区	C 線区	D 線区
	(本)/50本	(本)/50本	(本)/50本	(本)/15本
スケーリング	31(62%)	20(40%)	13(26%)	5(33%)
縦ひび割れ	22(44%)	20(40%)	4(8%)	11(73%)
曲げひび割れ	46(92%)	50(100%)	35(70%)	14(93%)
PC 鋼線露出	11(22%)	10(20%)	8(16%)	0(0%)

(a) まくらぎ上面のスケーリング, PC 鋼線の露出 曲げひび割れ(マーカーで加筆)

(b) まくらぎ底面の曲げひび割れ

図3 凍結融解試験結果

図4 コア中の気泡の粒径ごとの分布表5 気泡間隔係数

まくらぎ	空気量 A(%)	気泡間隔係数 $L(\mu m)$
A 線区1	1.10	2575
A 線区2	0.62	1723
B線区1	0.35	1233
B線区2	0.21	1096
C 線区	0.64	2789
D 線区	0.34	1515
AE	4.4	222

でないコアの気泡はいずれの粒径でも 10 個に満たない。 また,表5 に示す通り,AE コンクリートでないコアの空 気量は 0.21 ~ 1.10%,気泡間隔係数は 1096 ~ 2789 μ m であった。一般にコンクリートの耐凍害性を高めるには 空気量を 3% 以上,気泡間隔係数を 300 μ m 以下とすれ ば優れた耐凍害性が期待できる⁶⁾ とされており,本試 験結果からいずれの供試体も耐凍害性が低いことがわか る。一方,現在の PC まくらぎで標準的に使用される AE コンクリート (AE) では,空気量 4.4%,気泡間隔係数 222 μ m であり,耐凍害性を有していることがわかる。 2.3.4 超音波伝搬速度の測定試験

図5に超音波伝搬速度の測定試験結果の例を示す。目 視でスケーリングが確認できない部分の伝搬速度は4.64 ~4.94km/s 程度となったが,スケーリングが判別でき る部分では0.33~2.47km/s 程度に低下した。一方,中 央部,端部では一部にスケーリングが発生(図5(b),(c)) していてもレール位置断面における伝播速度の低下はそ れほど顕著ではなかった。これは、レール位置断面は, 軌道パッドやレールに覆われており、日射,凍結融解な どの影響を受けにくく、コンクリートが劣化しにくいた めと推察される。なお、営業線に敷設履歴のない新品の PC まくらぎの伝播速度は5.00km/s 程度であることを別 途実施の試験により確認した。

2.3.5 圧縮強度および静弾性係数試験

図 6(a) に圧縮強度試験結果を、図 6(b) に静弾性係数 試験の結果を示す。圧縮強度はいずれのコアも PC まく らぎの設計基準強度以上の強度を有していた。また、コ ンクリートの静弾性係数(以下、ヤング係数)は、概ね 鉄道構造物等設計標準・同解説(コンクリート構造物)⁷⁾ に示される設計基準強度に対するヤング係数 33kN/mm² を概ね平均値とする分布であることがわかる。なお、コ

(a) **圧縮試験** (b) 静弾性係数 図6 圧縮試験および静弾性係数試験結果

ア採取箇所は,まくらぎ1本の中でコアが採取可能な比較的健全な箇所であり,スケーリングなどの変状が発生した箇所は当然のことながらこれらの図の圧縮強度やヤング係数よりも小さい値となると考えられる。

2.3.6 曲げ試験

図7に曲げ試験結果を示す。レール位置断面の結果 を例として示す。表4に示したように各種変状が発生し たまくらぎであったが,JIS規格値を満足しないものは 165本中7本(A線区で3本,B線区で4本)であった。 これらはまくらぎ全体にスケーリングが発生(図5(e)) するとともに、スケーリングでコンクリートが剥落した 部分のPC鋼線が露出するような状態であった。これら の変状は、明らかに健全ではないと目視で判別できるレベルの変状であった。一方、中央部、端部の一部にスケーリングが発生(図5(b),(c))していたとしても、2.3.4 項で述べた通りレール位置断面のコンクリートは比較的 健全であるため、曲げ破壊荷重の顕著な低下は認められなかったと考えられる。

3. 数値解析によるスケーリング範囲が PC ま くらぎの耐荷力に及ぼす影響

本章では、スケーリングが PC まくらぎの耐荷力に及 ぼす影響を明らかにするため、PC まくらぎ上のスケー リング範囲をパラメータとした曲げ試験に関する数値解 析を実施した。対象とした PC まくらぎの断面はレール 位置断面とし、まくらぎが下に凸に変形する正曲げで解 析を実施することとした。

3.1 解析方法

3.1.1 解析モデルの概要

図8に解析モデルの概要を示す。解析には非線形構造 解析用汎用ソフトウェアLS-DYNA(ver R10.1.0)⁸⁾を 用いた。本解析モデルは、PCまくらぎ(3PR)を構成 するコンクリート、PC鋼より線、スターラップおよび レール位置断面での正曲げ試験を表現するための載荷 点、2つの支点からなる。レール締結用の埋込栓やその 周辺のスパイラル筋はモデル化していない。また、解析 時間の短縮を図るために、構造の対称性を考慮した1/2 モデルとした。載荷条件はすべてJISE 1201に準拠した。

コンクリート,載荷点,支点は8節点ソリッド要素で, PC 鋼より線およびスターラップは梁要素でモデル化した。要素サイズは,10mmを基準とし,最大でも20mm 以下とした。解析モデル全体での総節点数は42262,総 要素数は34856であった。要素積分点に関しては,ソリッ ド要素には1積分点を,梁要素には4積分点を適用した。 また,載荷点および支点要素については剛体とした。

境界条件は,解析モデルの対称境界には面対称を考慮 した拘束を行い,載荷点は鉛直方向(載荷方向)以外の 自由度を,支点は全自由度をそれぞれ拘束した。PCまく らぎと載荷点間,PCまくらぎと支点間の接触条件は,面 と面の接触として定義した。また,PC鋼より線およびス ターラップの梁要素はコンクリート要素内に埋め込んでモ デル化し,要素間の付着や滑りを考慮せず,梁要素の節点 がコンクリート要素の変形に完全に追従するものとした。

3.1.2 材料モデル

表6に材料定数を示す。コンクリートの材料定数は, 後述する解析モデル検証用に実施した新品のPCまくら ぎ製造時におけるテストピースの一軸圧縮強度および設 計標準⁷⁾に基づき設定した。PC 鋼より線の材料定数に

図8 解析モデルの概要(1/2 モデル)

表6 本解析で用いた材料定数

材料	弹性係数 E (kN/mm ²)	ポアソン 比	圧縮強度 f' _c (N/mm ²)	引張強度 f _t (N/mm ²)
コンクリート	35.0	0.20	60.0	3.53
PC 鋼より線	203.0	0.30	降伏 σ _y : 最大 σ _u :	1522.5 1998.0
スターラップ	200.0	0.30	弾性	体
載荷点・支点	剛体			

ついては、ポアソン比は設計標準⁷⁾の鋼材の値を用い、 弾性係数や引張力/伸びの関係、最大引張力はミルシー トの値を使用した。スターラップは弾性体とし、設計標 準に基づいて鋼材の材料定数を設定した。載荷点および 支点については剛体とした。

図9に本解析で用いた材料モデルを示す。図9(a)に コンクリートに関する単軸換算の応力-ひずみの関係を 示す。圧縮側は圧縮強度に達した後にひずみ増加に応 じて徐々に応力が軟化するモデルを,引張側は引張強度 に達した後の軟化曲線をコンクリートの引張破壊エネル ギーに基づき2直線で近似するモデルとした⁷⁾⁹⁾。図 9(b)にPC鋼より線に関する単軸換算の応力-ひずみの 関係を示す。PC鋼より線の材料モデルは,ミルシート から読み取った引張試験力-伸びの関係を応力-ひずみ の関係に換算して入力した。

3.1.3 解析手法

数値解析は2つのステップで行う。第1ステップでは, 緊張力に相当する引張応力をPC鋼より線に導入し,平 衡状態を求めることでプレストレスを考慮したPCまく らぎの応力状態を求めた。第2ステップでは,第1ステッ プで求めた平衡状態のPCまくらぎに載荷点および支点と の接触を考慮し,載荷点に鉛直方向の強制変位を与える ことで曲げ試験を再現した。曲げ試験時の載荷荷重につ いては強制変位を与える載荷点の反力から計算した。ま た,載荷変位については実際の曲げ試験に合わせて載荷 点の変位とした。なお,時間積分法は陽解法の1つであ る中央差分法を用い,時間刻みは1.5×1.0⁶scc程度とした。

3.1.4 解析ケース

図8のPCまくらぎを基本ケース(CASE0)とし,さ らに表7に示すスケーリングの範囲を変化させた4種 類の解析ケースを設定した。スケーリング範囲は第2章 の調査結果を基に設定することとし、具体的には、解 析モデル上のスケーリング範囲を図8(a)に赤字で示し た範囲とした。解析上のスケーリングは、健全なPCま くらぎから上面における要素を削除することで表現し た。また、スケーリングの深さの影響についても検討す るため、PCまくらぎ表面から1層~3層の要素を段階 的に削除した解析も実施した。ここで、1層の厚さは概 ね10mm 程度であり、おおよそ3層がPC鋼より線のか ぶり厚に相当する。なお、PC鋼より線に導入される緊 張力(28.7kN/1本)の有効率(以下、有効緊張率)は、 後述の検討により75%で統一した。

3.2 解析結果

3.2.1 解析モデルの妥当性

図10に新品のPCまくらぎに対して実施した曲げ試 験結果と解析結果の比較を示す。図には解析結果として 有効緊張率を100%とした場合と75%とした場合を示 す。ここで、有効緊張率75%は試験結果と解析結果の 荷重 - 変位関係が極力近くなるように試行錯誤的に決定 したものである。なお、PCまくらぎの設計ではPC鋼 より線の有効緊張率として65%が使用される¹⁰⁰。図よ り、有効緊張率を75%とすることで、PCまくらぎの曲 げ試験時のひび割れ発生に伴う剛性の低下や耐荷力(最 大荷重)、破壊までの荷重 - 変位関係を精度良く表現可 能であることがわかる。ただし、「試験2」については

表7 解析ケース

CASE	スケーリング範囲	スケーリング深さ
健全	なし	0
1	まくらぎ両端部から 340mm	
2	まくらぎ中央部 350mm	1 屈 (10mm)
3	まくらぎ両端部から 340mm まくらぎ中央部 960mm (レール位置を除く範囲)	1 層 (10mm) 2 層 (20mm) 3 層 (30mm)
4	まくらぎ全体	

変位 1.8mm 程度で試験結果と解析結果に差異が生じて いるが、これは載荷中に生じた支点あるいは載荷点での コンクリートのひび割れや、それに伴う PC まくらぎの ずれ等が原因と考えられる。

3.2.2 スケーリング範囲が耐荷力に及ぼす影響

図11にスケーリング範囲が荷重 - 変位関係に及ぼす 影響に関する解析結果を示す。レール位置断面の正曲 げ試験を対象としたため、中央部のスケーリングの影響 は当然のことながら小さいが、端部やまくらぎ全体にス ケーリングが発生すると耐荷力が低下すること、スケー リングの深さが大きくなると耐荷力が大きく低下するこ と、PC 鋼より線のかぶり厚に相当する厚さでスケーリ ングが発生すると JIS の規格値程度かそれを下回る耐荷 力となることなどがわかる。以上の解析結果から、スケー リング範囲に着目することで凍害を受けた PC まくらぎ の健全度評価が可能になると考えられる。

4. まとめ

今回対象とした凍害危険度が2および3の地域に敷設 されたAEコンクリートを用いていない経年PCまくら ぎ(経年45~55年程度)を対象に各種試験および数 値解析を実施した。得られた知見は次のとおりである。

- (1) 主な変状は、凍害が原因と考えられるスケーリング および微細ひび割れが長手方向に連続したひび割 れ、レール位置断面下縁の曲げひび割れ、まくらぎ 底面の摩耗、PC 鋼線の露出などであった。
- (2) 凍結融解試験および気泡間隔係数測定試験より, AE コンクリートを使用していない PC まくらぎは 耐凍害性が低いことがわかった。

図 11 スケーリング範囲が PC まくらぎの耐荷力に及 ぼす影響

表8 凍害を受けた経年 PC まくらぎの健全度評価方 法の参考例

健全度	まくらぎの状態	措置の例
А	 ・まくらぎ全体にスケーリング、断面 欠損が発生 ・PC 鋼線やフターラップが露出 ・レール締結のためのばね受台やその 周囲の断面が欠損 	交換
В	・まくらぎ一部にスケーリング、微細 ひび割れ、断面欠損が発生	経過観察
С	 ・まくらぎ一部にスケーリング、微細 ひび割れが発生 	経過観察
S	・健全	

- (3) スケーリングが発生していない部分の超音波の伝播
 速度は4.64~4.94km/s程度となった。
- (4)曲げ試験で JIS 規格値を満足しないまくらぎは、目 視で明らかに健全ではないと判別できる程度の変状 が発生したまくらぎであった。
- (5) JIS に規定される曲げ試験を再現可能な数値解析モデルを構築した。本モデルを用いてスケーリングの範囲や深さなどのパラメータの影響を検討した結果,スケーリング範囲に着目して凍害を受けた PC まくらぎの健全度を評価できることを明らかにした。
- (6)以上の結果より、凍害を受けた経年 PC まくらぎに 対する実務における健全度評価方法の例を表8に整 理した。スケーリング範囲により凍害を受けた PC まくらぎの健全度評価が行えると考えられる。

なお、本研究で対象とした AE 剤を使用していない PC まくらぎは、JIS で規定される耐荷力を下回ったもの が 165 本中 7本(この 7本は連続的に敷設されていたわ けではない)であり、現時点では直ちに交換の必要はな いと考えられる。今後は調査範囲や数値解析のパラメー タを拡大するとともに、経年 PC まくらぎの交換計画に 反映させることを検討していきたい。

文 献

- 渡辺勉,曽我部正道:営業線に敷設された経年 PC まくらぎの耐荷力評価,日本鉄道施設協会誌,Vol.64, No.4, pp.49-52,2018
- 2)長谷川寿夫:コンクリートの凍害危険度算出と水セメント比
 限界値の提案,セメント技術年報, Vol.29, pp.248-253, 1975
- 3)成田健,小山慎一郎,三橋博三:実構造物群の調査結果に 基づく凍害損傷リスクマップの作成に関する研究,コンク リート工学論文集, Vol.19, No.1, pp.29-38, 2008
- 4)渡辺勉,飯島亨,盛田慶,後藤恵一:凍害環境下における AE剤を使用していない経年 PCまくらぎの性能評価,土 木学会全国大会第74回年次学術講演会,VI-887,2019
- 5) 土木学会コンクリート委員会:コンクリート標準示方書 【設 計編】, 丸善, p.165, 2017
- 6)日本コンクリート工学会:コンクリート中の気泡の役割・ 制御に関する研究委員会報告書,2016
- 7)鉄道総合技術研究所編:鉄道構造物等設計標準・同解説(コンクリート構造物),丸善,2004
- Livemore Software Technology Corporation (LSTC): LS-DYNA Theory Manual, 2019.
- Peter Grassl et al.: CDPM2: A damage-plasticity approach to modelling the failure of concrete, International Journal of Solids and Structures, 2013.
- 鉄道総合技術研究所編:鉄道構造物等設計標準・同解説(軌 道構造),丸善,2012