ニホウ化マグネシウム超電導線材を用いた 蓄電用超電導コイルの基礎検討

恩地	太紀*	石原	篤*	小林	祐介*
福本	祐介*	富田	優*	濱島	高太郎**

Fundamental Study of MgB₂ Superconducting Coil for Storage

Taiki ONJI	Atsushi	ISHIF	IARA	Yusu	ike KOE	BAYASHI	
Yusuke FUKUMO	ГО М	/lasaru	TOMITA]	Fakataro	HAMAJIN	MA

We carried out a basic study on the power storage coil using MgB₂ superconducting wire by which we can expect to lower cooling cost and manufacturing cost. First, for manufacturing the storage coil, the basic characteristics of the MgB₂ superconducting wire were evaluated. The characteristics at 20 K 1.5 T have been found out to be such that the critical currents are 200 A for the heat treated MgB₂ wire and 170 A for the untreated MgB₂ wire. Based on the results, prototype storage coils were fabricated, performance evaluation was carried out, and the energization of the operation current of 600 A was confirmed at 1.5 T necessary for several 10 kJ class coils. $\neq - \nabla - F : \mathcal{M} \equiv \ddot{q} \otimes \mathcal{M}$, $\mathcal{M} \equiv \ddot{q} = \mathcal{I} \mathcal{N}$, $\ddot{w} \equiv \ddot{w} \equiv \mathcal{M}$, whether the set is the several for the several for the several 10 kJ class coils.

1. 緒言

超電導とは、物質をある温度まで冷却すると急激に電 気抵抗がゼロになる現象のことを指し、超電導状態にな る物質のことを超電導体と呼ぶ。これを加工した超電導 材料は、図1に示すように、形状により大きくバルク体 と線材に分けられ、実用化に向けて活発に研究開発が進 められている。

塊として使用する超電導バルク体はマイスナー効果と 呼ばれる磁場の侵入を排除する効果を用いて,超電導マ グネット等への磁場応用開発が進められている。超電導 バルク体は分析器の磁場発生源や薬剤の磁気搬送,電 流リード,磁気軸受部等に応用することによる各種機器 の大幅な性能向上が期待されている。一般的な永久磁石 の磁力は IT (テスラ)以下であるのに対し,超電導バ ルク体では17T にも達する¹⁾。一方,薄く引き伸ばして 使用する超電導線材は電気抵抗ゼロで通電することがで き,通電による発熱が発生しないため,大電流を流すこ とができる。この特性を生かし,超電導マグネット,超 電導コイル,超電導ケーブル²⁾のような電力応用分野 で研究開発が進められている。

現在,鉄道総研では,これら超電導材料の製作から各 種応用へ向け一貫した研究開発に取り組んできた。超電 導材料の標準品を応用機器に使用するだけでなく,各種

*	材料技術研究部	超電導応用研究室
* *	東北大学	

図1 超電導材料の種類とその応用例

機器に適応した形状や性能に合わせ,超電導材料の製作 や改良を行うことにより,超電導機器の高性能化の実現 を目指している。

蓄電装置である超電導磁気エネルギー貯蔵装置 (SMES)は、現状ではニオブチタン(NbTi)やニオブ 三スズ(Nb₃Sn)が使用されている。NbTiやNb3Snは 安定性、信頼性が非常に高いが、冷媒として用いる液体 ヘリウム(He)が高価であるためランニングコストが 大きいことが課題である。鉄道総研では、本稿で紹介す るニホウ化マグネシウム超電導線材を用いた蓄電用超電 導コイルの基礎検討を通じて、電力や鉄道用として、よ り安価で手に入れやすい価格での蓄電装置の開発を目指 している。

2. ニホウ化マグネシウム(MgB₂) 超電導体

ニホウ化マグネシウム (MgB₂) 超電導体は 2001 年に 発見された比較的新しい超電導体である³⁾。金属系超電 導体で最も高い 39 ケルビン (K) という超電導転移温 度を有し,冷却コストを低減できる温度領域で動作可能 な物質である。さらに, MgB₂ はホウ素 (B) とマグネ シウム (Mg) という軽元素のみで構成されることから, 軽量で安価という特徴があるため,実用化に向けた研究 が盛んに行われている。

超電導バルク体では、従来イットリウム(Y)やガド リニウム(Gd)、バリウム(Ba)、銅(Cu)の酸化物か らなるレアアース(RE:希土類元素)系バルク体が主 流であったが、製作過程において種結晶を用いた結晶成 長を必要とするため、大型試料の製作が困難であること や、歩留まりの悪さが問題となっている。一方、MgB₂ 超電導バルク体は、レアアース系超電導体と比較し、使 用可能温度が低いが、均等な圧力をかけて焼成すること で製作でき、 ϕ 100mmの大きなバルクの作製も可能で ある。また、MgB₂バルク体は加工が容易であり、任意 の形状に加工することが可能であるため、NMR や MRI といった精密機器への応用に適していると考えられる。

超電導線材においては、従来の超電導コイルやマグ ネットは NbTi や Nb₃Sn のような金属超電導体が使用さ れており、液体ヘリウム温度まで冷却する必要があった。 しかし近年では、バルク超導体と同様に RE 系超電導材 料のような高温超電導材料においても研究が進められて いる。これらは、液体窒素温度で利用できる超電導材料 であり、応用として非常に期待されている物質ではある が、RE は希少価値が高く、材料として高価であり、か つ製作工程においても複雑な工程が入ることからコスト 面で問題となることが多い。そこで、コスト低減目的に、 MgB₂線材の開発が始められ、国内においても市販され 始めている。MgB₂線材の開発は始まったばかりである が、今後10年で臨界電流特性は3T,20Kにおいて5倍 に上昇し、線材コストは1/20まで低下すると言われ⁴⁾、 今後のコスト低減が期待できる。以上のことから、鉄道 総研では、製作コスト、冷却コストの低減が期待できる MgB₂線材を用いた蓄電用のコイルの設計・試作に取り 組んでいる⁵⁾。

3. 蓄電用コイルの開発

本稿では33kJ 級の蓄電コイルの開発を目指し,製作 に必要な超電導特性を評価するための基礎検討として, 評価用小型コイルとして蓄電コイルの試作を行った。 33kJ 級のコイルに必要な仕様は表1に示す通りであり, 600A の通電により目標のエネルギーを蓄えることが可 能となる。そのため,試作したコイルに対しても600A の通電を行い,1.5T での性能評価を行うこととした。し かしながら,MgB2線材一本での通電容量は小さいため, 蓄電コイルに必要な電流容量を確保するには,多数本で 構成する必要がある。そのため,MgB2線材の磁場中特 性評価を行うとともに,20K,1.5T で 600A 以上通電可 能な MgB2 撚り線導体,ならびにそれらを用いた蓄電コ イルの試作を行った。

蓄積エネルギー [kJ]	33
インダクタンス [H]	0.18
運転電流 [A]	600
最大磁束密度 [T]	1.5
コイル内径 [mm]	450
コイル外径 [mm]	660
コイル高さ [mm]	77.4
コイル構成	8ダブルパンケーキ
全ターン数	500

表1 目標となる 33kJ 級蓄電コイルの仕様

3.1 MgB₂線材の仕様

 MgB_2 線材は熱処理を施すことで超電導の特性を示す 線材となるが、熱処理後は、曲げ歪みに弱く劣化の原因 となる。しかし、コイル化した後に熱処理を施すにはコ イルが収まる大きな焼成炉が必要となるため、大型コイ ルを作製するには、コイル化前に熱処理を施す必要があ る。本稿では、両者の特性を把握するため、Columbus 社製の熱処理済 MgB_2 線材と HyperTech 社製の未熱処 理 MgB_2 線材 (30-NM) の2種類について比較した。 Columbus 社製の熱処理済 MgB_2 線材は出荷前に熱処理 が施されており、断面図は図2で示すように、中心から 銅、鉄、ニッケルで覆われた MgB_2 フィラメント12本、

図2 Columbus 社製 MgB₂ 線材断面写真

図3 HyperTech 社製 MgB₂ 線材断面写真

モネルとなっている。HyperTech 社製の未熱処理 MgB_2 線材は出荷前に熱処理が施されていないため、アルゴ ン (Ar) 雰囲気下 650°Cで1時間の熱処理を行った。断 面図は図3に示すように中心から銅、ニオブで覆われた MgB_2 フィラメント30本、モネルとなっている。

3.2 MgB₂線材の特性評価

直線状態での特性を評価するため、外部磁場と温度を 変化させながら臨界電流値の評価を行った。MgB₂線材 の特性評価システムは、真空容器、冷凍機、電流リード を組み合わせた装置である。MgB₂線材は冷凍機で冷却 し、10T 超電導マグネットを用いて外部磁場を印加し、 直流電源(HX010-3600,高砂製作所製)を用いて通電 を行った(図4)。

その結果, Columbus 社製線材では 20K, 1.5T におい て 200A 以上の臨界電流値を得ることが分かった(図 5)。 また, 20K から 30K まで 2K 刻みの各温度における磁 場依存性を図 6 に示す。以上により, 撚り線化に必要な 温度領域,磁場領域の広範囲のデータを取得することが できた。

HyperTech 社 製 線 材 で は, 20K, 1.5T に お い て, 170A 程度の臨界電流値を得ることが分かった(図 7)。 また, 20K から 30K まで 2K 刻みの各温度における磁 場依存性を図 8 に示す。どちらの線材においても同様の 温度変化,磁場依存性を有することが明らかになった。

以上より, HyperTech 社製の未熱処理 MgB₂線材,

図4 MgB₂線材の特性評価システムの概要図

図5 Columbus 社製線材の電流 - 電圧特性

図6 Columbus 社製線材の臨界電流値の磁場依存性

250 HyperTech 20 | 200 26 K € 150 臨界電流値 28 K 100 50 0.5 1.0 2.0 1.5 2.5 3.0 3.5 磁場 (T)

図8 HyperTech 社製線材の臨界電流値の磁場依存性

矩形(ラザフォード)型 MgB₂ 導体の断面図 図 9

コイル構成	シングルパンケーキ
製作方法	W & R
コイル内径 [mm]	200
コイル外径 [mm]	< 320
全ターン数	10
定格通電電流 [A]	600
蓄積エネルギー [J]	7.3
最大磁束密度 [T]	0.17

表2 蓄電コイルの仕様

Columbus 社製の熱処理済 MgB2線材ともに、撚り線や コイルの設計に反映できる基礎データを取得できた。こ れらの情報をもとに, 蓄電コイルの設計, 試作を行った。

3.3 蓄電コイルの仕様

コイルの製作方法には、コイル巻線後に熱処理をする Wind & React 法(W&R 法:小型コイル向け),および 熱処理後にコイル巻線をする React & Wind 法 (R&W 法:大型コイル向け)がある。蓄電用コイルの製作にあ たり, MgB2線材の種類, 撚り線導体形状, 巻線方法な ど様々な条件で検証することが重要であるが、本稿で は、矩形(ラザフォード)型 MgB2 導体を用いた W&R 方式でコイルの試作を行った(図9)。仕様を表2に示 す。線材は熱処理済み MgB2線材と比較して許容曲げ歪 みが大きな熱未処理 MgB2線材を使用した。ラザフォー ド型 MgB, 導体は、ニッケル銅(CuNi)のレーストラッ クフォーマの周りに8本のHyperTech 社製の未熱処理 MgB2線材と同径の4本のCu線で構成した。ラザフォー ド型 MgB, 導体とコイル設計に際しては線材が受ける複 合歪みを微分幾何学に基づいた解析を行った。一例とし て撚りピッチ 51mm, 半径 100mm のコイル化設計での 複合歪み分布を図10に示す。図10はコイル中心を原点

図10 撚線コイル化に伴う線材が受ける複合歪み

図 11 蓄電用コイルの写真

とする各座標の線材が受ける歪みを表したものであり、 最大歪みは1.54 %の許容値以内になるように設計した。 蓄電コイルは、製作した導体を内径 200mm で10ター ン巻き付けた構造である。コイル化を施した後、650度 1時間真空中で熱処理を行い、さらに機械的特性を上げ るため樹脂含浸を行った。製作した蓄電コイルを図11 に示す。

3.4 蓄電用コイルの特性評価

蓄電コイルの特性評価システムは、線材と同様、真 空容器、冷凍機、電流リードを組み合わせたものであ る(図12)。5.5T 超電導マグネットを用いて外部磁場を 印加し、直流電源(HX010-1200,高砂製作所製)を用 いて通電を行った。蓄電コイルの20Kでの電流-電圧 特性の磁場依存性を図13に示す。20Kでは2.0T以下 の磁場下において600Aの通電を行っても電圧の上昇は 見られず、2.5Tの磁場を印加してもコイルの臨界電流 値が600A以上であることが把握できた。1.5Tの外部磁

図 13 20 K での電流 - 電圧特性の磁場依存性

図 15 蓄電用コイルの臨界電流値の温度磁場依存性

場を印加した電流 - 電圧特性の温度依存性を図 14 に示 す。1.5T の磁場下において 24K 以下では電圧の発生が ほぼゼロを示した。また、それらをまとめた温度磁場依 存性を図 15 に示す。33kJ 級コイルの最大磁束密度であ る 1.5T,運転電流 600A は 25K 以下の運転温度で可能 であり、本構成の撚り線がコイルに巻線しても臨界電流 密度が大きく低下するような劣化はみられなかったこと から、性能が保証されることを確認した。

4. まとめ

製作コスト,冷却コストの低下が期待できる二ホウ化 マグネシウム(MgB₂)超電導線材を用いて蓄電用コイ ルの開発を行った。その結果以下の知見を得た。

(1) 熱処理済み超電導線材,未熱処理超電導線材に関して,撚り線化、コイル化に必要な基礎データである 3.5T以下の磁場下,20K-30Kの温度領域において MgB,線材の超電導特性を把握した。

(2) コイル化後の導体において,超電導特性を評価した。

その結果,適正範囲内でコイル化を施すことにより, 臨界電流の大きな低下が見られず,本構成の撚り線 がコイルに巻線しても性能が保証されることを確認 した。

(3) 33kJ 級コイルの運転領域 1.5T,定格通電 600A に おいて 25K 以下で運転することができれば、電圧 の発生なく運転することが可能であることを確認し た。また、コイル化に必要な臨界電流特性の温度磁 場依存性を広範囲で取得することにより、33kJ 級 のコイルの構成を変化させた場合においても、必要 なコイル特性が把握できた。

今後,これらのデータを基に33kJ級コイルの大型コ イルの設計,製作など,鉄道や電力用貯蔵として期待で きる大容量蓄電装置用コイルの開発を目指していく。

謝 辞

本研究は国立研究開発法人 科学技術振興機構 (JST) の戦略的創造研究推進事業・先端的低炭素化技術開発 (ALCA) JPMJAL1002 の助成を受けて実施した。

文 献

- M. Tomita, M. Murakami, "High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K", Nature vol. 421, 521, 2003.
- 2) Superconductors drive trains, Nature, vol.542, 275, 2017.
- J. Nagamatsu, N. Nakagawa, T. Muranaka, I. Zenitany and J. Akimitsu, "Superconductivity at 39 K in magnesium diboride" Nature vol. 410, 63, 2001.
- R. Flikiger et al., "Advances in MgB₂ Conductors" Applied Superconductivity Conference., 3PLA-02 (2014).
- 5) M. Tomita, T. Onji, A. Ishihara, Y. Kobayashi, Y. Fukumoto, S. Mizuno, T. Yagai, T. Takao, T. Komagome, K. Tsukada, T. Hamajima, "Superconducting Properties of a Prototype Pancake Coil Using a MgB₂ Rutherford-Type Stranded Conductor," IEEE Trans. Appl. Supercond., vol. 28, no. 3, 5700604, 2018.